The lefthanded local lemma characterizes chordal dependency graphs

نویسنده

  • Wesley Pegden
چکیده

Shearer gave a general theorem characterizing the family L of dependency graphs labeled with probabilities pv which have the property that for any family of events with a dependency graph from L (whose vertexlabels are upper bounds on the probabilities of the events), there is a positive probability that none of the events from the family occur. We show that, unlike the standard Lovász Local Lemma—which is less powerful than Shearer’s condition on every nonempty graph—a recently proved ‘Lefthanded’ version of the Local Lemma is equivalent to Shearer’s condition for all chordal graphs. This also leads to a simple and efficient algorithm to check whether a given labeled chordal graph is in L.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Roussel-Rubio-type lemmas and their consequences

Roussel and Rubio proved a lemma which is essential in the proof of the Strong Perfect Graph Theorem. We give a new short proof of the main case of this lemma. In this note, we also give a short proof of Hayward’s decomposition theorem for weakly chordal graphs, relying on a Roussel–Rubio-type lemma. We recall how Roussel–Rubio-type lemmas yield very short proofs of the existence of even pairs ...

متن کامل

Complement of Special Chordal Graphs and Vertex Decomposability

In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.

متن کامل

Quest for Negative Dependency Graphs∗

The Lovász Local Lemma is a well-known probabilistic technique commonly used to prove the existence of rare combinatorial objects. We explore the lopsided (or negative dependency graph) version of the lemma, which, while more general, appears infrequently in literature due to the lack of settings in which the additional generality has thus far been needed. We present a general framework (matchi...

متن کامل

A new asymptotic enumeration technique: the Lovász Local Lemma

Our previous paper [14] applied a general version of the Lovász Local Lemma that allows negative dependency graphs [11] to the space of random injections from an m-element set to an n-element set. Equivalently, the same story can be told about the space of random matchings in Kn,m. Now we show how the cited version of the Lovász Local Lemma applies to the space of random matchings in K2n. We al...

متن کامل

Learning Inclusion-Optimal Chordal Graphs

Chordal graphs can be used to encode dependency models that are representable by both directed acyclic and undirected graphs. This paper discusses a very simple and efficient algorithm to learn the chordal structure of a probabilistic model from data. The algorithm is a greedy hillclimbing search algorithm that uses the inclusion boundary neighborhood over chordal graphs. In the limit of a larg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2012